Milestones for hybrid-catalysis in Cascade Reactions

Applications of heterogeneous Flow-Photochemistry in transparent capillaries

C. Deckers^{1,*}, E. Cermjani^{1,2}, T. H. Rehm¹, A. Schmitt³, G. Ulm³, J. Prieschl³, D. Hanselmann³, B. Herbig³ ¹ Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany ² Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany ³ Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany * christoph.deckers@imm.fraunhofer.de

Abstract & Vision

The synthesis of many **fine chemical products** for the pharmaceutical and the agrochemical industry often relies on catalysis. To achieve an **easy recycling** of those catalysts, **heterogeneous** materials are preferred. This is of particular interest, as filtration or other separation techniques can be used to **simplify down-stream** processes immensely.

Here, implementation in Flow Chemistry is realized via the **SMBR**-concept (Serial Micro Batch Reactor).[1] A transparent, inert FEP-capillary provides optimal conditions to build up a slug flow-like pattern with (supra-)particles to conduct flow-photochemistry.

Particular attention must be paid to the preparation of the SMBR as catalytic activity must be maintained. Moreover, the solvent of the liquid phase can lead to a catalyst **separation**. Both requirements can have a negative impact on each other. This pitfall is eliminated by choosing an **appropriate continuous phase** (gases or liquids). Multiple products are prepared via the SMBR-concept to **realize cascade reactions**.

Heterogeneous Catalysis via SMBR - More than a Slug Flow

Following these fundamentals will keep solid catalyst particles moving, prevent clogging and deposition along the capillary.[2]

Technique		Guidelines against clogging
 Prevent cluster formation 		 Stabilize particles sterically or electrostatically (e.g. correct solvent) Avoid narrow radii and inertial deposition
 Microchannel design 	າ∭ົ	 Select materials that inhibit attraction of particles
 Process procedures 		 Clean microchannel occasionally Use flow pattern that prevent particle-wall contact (e.g. by an inert continuous phase)
 External forces 		 Apply external forces to maintain uniform dispersions, e.g. by ultrasound

Implementation

Continuous phase: e.g. inert/reactive gas or liquid

Conclusion & Next steps

The SMBR-concept, an intelligent catalyst supply and correct stabilization of the flow pattern guarantee effective heterogeneous (photo-)catalysis The surface tension between the continuous and liquid phase is essential to stabilize the catalyst and prevent deposition

Liquid phase including the substrate(s)

Key to success:

- Capillary, continuous phase, liquid phase and solid catalyst are **adjusted** to each other
- **Active mixing** of the solid particles for a constant slurry feed (in 20 mL or 50 mL syringes)
- Feasibility to **integrate** different capillary photoreactors
- Complete **irradiation** of the liquid in comparison to a packed bed reactor

- Nanoparticulate or heterogeneous catalysts in supraparticle form individually designed for a specific reaction are featured by Flow Chemistry
- Spray-drying allows the combination of different particle types () to form hybrid supraparticles for catalytic cascade reactions
- Confirm hybrid-catalyst activity

Example 2: In situ H₂O₂-Generation for Enzyme Catalyzed Oxidations

[1] B. Pieber, M. Shalom, M. Antonietti, P. H. Seeberger, K. Gilmore, Angew. Chem. Int. Ed. 2018, 57, 9976. [2] F. Scheiff, D. W. Agar in Biological and medical physics, biomedical engineering (Eds.: M. Köhler, B. P. Cahill), Springer-Verlag, Berlin, Heidelberg, 2014, 103–148. [3] Y. Guo, X. Tong, N. Yang, *Nano-Micro Lett.* **2023**, *15*, 77.

SPONSORED BY THE

In cooperation with

www.cascade-reactions.de